Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reasoning Under the Principle of Maximum Entropy for Modal Logics K45, KD45, and S5 (1310.6439v1)

Published 23 Oct 2013 in cs.LO

Abstract: We propose modal Markov logic as an extension of propositional Markov logic to reason under the principle of maximum entropy for modal logics K45, KD45, and S5. Analogous to propositional Markov logic, the knowledge base consists of weighted formulas, whose weights are learned from data. However, in contrast to Markov logic, in our framework we use the knowledge base to define a probability distribution over non-equivalent epistemic situations (pointed Kripke structures) rather than over atoms, and use this distribution to assign probabilities to modal formulas. As in all probabilistic representations, the central task in our framework is inference. Although the size of the state space grows doubly exponentially in the number of propositions in the domain, we provide an algorithm that scales only exponentially in the size of the knowledge base. Finally, we briefly discuss the case of languages with an infinite number of propositions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.