Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Entire Solutions for Bistable Lattice Differential Equations with Obstacles (1310.4978v1)

Published 18 Oct 2013 in math.DS and math.AP

Abstract: We consider scalar lattice differential equations posed on square lattices in two space dimensions. Under certain natural conditions we show that wave-like solutions exist when obstacles (characterized by "holes") are present in the lattice. Our work generalizes to the discrete spatial setting the results obtained in a paper of Berestycki, Hamel and Matano for the propagation of waves around obstacles in continuous spatial domains. The analysis hinges upon the development of sub and super-solutions for a class of discrete bistable reaction-diffusion problems and on a generalization of a classical result due to Aronson and Weinberger that concerns the spreading of localized disturbances.

Summary

We haven't generated a summary for this paper yet.