Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Emergence of Blind Areas in Information Spreading (1310.4707v1)

Published 17 Oct 2013 in physics.soc-ph and cs.SI

Abstract: Recently, contagion-based (disease, information, etc.) spreading on social networks has been extensively studied. In this paper, other than traditional full interaction, we propose a partial interaction based spreading model, considering that the informed individuals would transmit information to only a certain fraction of their neighbors due to the transmission ability in real-world social networks. Simulation results on three representative networks (BA, ER, WS) indicate that the spreading efficiency is highly correlated with the network heterogeneity. In addition, a special phenomenon, namely \emph{Information Blind Areas} where the network is separated by several information-unreachable clusters, will emerge from the spreading process. Furthermore, we also find that the size distribution of such information blind areas obeys power-law-like distribution, which has very similar exponent with that of site percolation. Detailed analyses show that the critical value is decreasing along with the network heterogeneity for the spreading process, which is complete the contrary to that of random selection. Moreover, the critical value in the latter process is also larger that of the former for the same network. Those findings might shed some lights in in-depth understanding the effect of network properties on information spreading.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Zi-Ke Zhang (48 papers)
  2. Chu-Xu Zhang (3 papers)
  3. Xiao-Pu Han (18 papers)
  4. Chuang Liu (71 papers)
Citations (22)

Summary

We haven't generated a summary for this paper yet.