Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting gradual changes in locally stationary processes (1310.4678v2)

Published 17 Oct 2013 in stat.ME, math.ST, and stat.TH

Abstract: In a wide range of applications, the stochastic properties of the observed time series change over time. The changes often occur gradually rather than abruptly: the properties are (approximately) constant for some time and then slowly start to change. In many cases, it is of interest to locate the time point where the properties start to vary. In contrast to the analysis of abrupt changes, methods for detecting smooth or gradual change points are less developed and often require strong parametric assumptions. In this paper, we develop a fully nonparametric method to estimate a smooth change point in a locally stationary framework. We set up a general procedure which allows us to deal with a wide variety of stochastic properties including the mean, (auto)covariances and higher moments. The theoretical part of the paper establishes the convergence rate of the new estimator. In addition, we examine its finite sample performance by means of a simulation study and illustrate the methodology by two applications to financial return data.

Summary

We haven't generated a summary for this paper yet.