Local cohomology modules of invariant rings (1310.4626v2)
Abstract: Let $K$ be a field and let $R$ be a regular domain containing $K$. Let $G$ be a finite subgroup of the group of automorphisms of $R$. We assume that $|G|$ is invertible in $K$. Let $RG$ be the ring of invariants of $G$. Let $I$ be an ideal in $RG$. Fix $i \geq 0$. If $RG$ is Gorenstein then, \begin{enumerate} \item $injdim_{RG} Hi_I(RG) \leq \dim \ Supp \ Hi_I(RG).$ \item $Hj_{\mathfrak{m}}(Hi_I(RG))$ is injective, where $\mathfrak{m}$ is any maximal ideal of $RG$. \item $\mu_j(P, Hi_I(RG)) = \mu_j(P\prime, Hi_{IR}(R))$ where $P\prime$ is any prime in $R$ lying above $P$. \end{enumerate} We also prove that if $P$ is a prime ideal in $RG$ with $RG_P$ \textit{not Gorenstein} then either the bass numbers $\mu_j(P, Hi_I(RG)) $ is zero for all $j$ or there exists $c$ such that $\mu_j(P, Hi_I(RG)) = 0 $ for $j < c$ and $\mu_j(P, Hi_I(RG)) > 0$ for all $j \geq c$.