Papers
Topics
Authors
Recent
Search
2000 character limit reached

Necessity of PT symmetry for soliton families in one-dimensional complex potentials

Published 16 Oct 2013 in nlin.PS and physics.optics | (1310.4490v1)

Abstract: For the one-dimensional nonlinear Schroedinger equation with a complex potential, it is shown that if this potential is not parity-time (PT) symmetric, then no continuous families of solitons can bifurcate out from linear guided modes, even if the linear spectrum of this potential is all real. Both localized and periodic non-PT-symmetric potentials are considered, and the analytical conclusion is corroborated by explicit examples. Based on this result, it is argued that PT-symmetry of a one-dimensional complex potential is a necessary condition for the existence of soliton families.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.