Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Information Sharing Between Noise And Regression Models Improves Prediction of Weak Effects (1310.4362v1)

Published 16 Oct 2013 in stat.ML and cs.LG

Abstract: We consider the prediction of weak effects in a multiple-output regression setup, when covariates are expected to explain a small amount, less than $\approx 1%$, of the variance of the target variables. To facilitate the prediction of the weak effects, we constrain our model structure by introducing a novel Bayesian approach of sharing information between the regression model and the noise model. Further reduction of the effective number of parameters is achieved by introducing an infinite shrinkage prior and group sparsity in the context of the Bayesian reduced rank regression, and using the Bayesian infinite factor model as a flexible low-rank noise model. In our experiments the model incorporating the novelties outperformed alternatives in genomic prediction of rich phenotype data. In particular, the information sharing between the noise and regression models led to significant improvement in prediction accuracy.

Summary

We haven't generated a summary for this paper yet.