Papers
Topics
Authors
Recent
Search
2000 character limit reached

Additive invariants of toric and twisted projective homogeneous varieties via noncommutative motives

Published 15 Oct 2013 in math.AG, math.AT, math.KT, math.RA, and math.RT | (1310.4063v1)

Abstract: I. Panin proved in the nineties that the algebraic K-theory of twisted projective homogeneous varieties can be expressed in terms of central simple algebras. Later, Merkurjev and Panin described the algebraic K-theory of toric varieties as a direct summand of the algebraic K-theory of separable algebras. In this article, making use of the recent theory of noncommutative motives, we extend Panin and Merkurjev-Panin computations from algebraic K-theory to every additive invariant. As a first application, we fully compute the cyclic homology (and all its variants) of twisted projective homogeneous varieties. As a second application, we show that the noncommutative motive of a twisted projective homogeneous variety is trivial if and only if the Brauer classes of the associated central simple algebras are trivial. Along the way we construct a fully-faithful tensor functor from Merkurjev-Panin's motivic category to Kontsevich's category of noncommutative Chow motives, which is of independent interest.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.