Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

From Stinespring dilation to Sz.-Nagy dilation on the symmetrized bidisc and operator models (1310.4048v3)

Published 15 Oct 2013 in math.FA

Abstract: We provide an explicit normal distinguished boundary dilation to a pair of commuting operators $(S,P)$ having the closed symmetrized bidisc $\Gamma$ as a spectral set. This is called Sz.-Nagy dilation of $(S,P)$. The operator pair that dilates $(S,P)$ is obtained by an application of Stinespring dilation of $(S,P)$ given by Agler and Young. We further prove that the dilation is minimal and the dilation space is no bigger than the dilation space of the minimal unitary dilation of the contraction $P$. We also describe model space and model operators for such a pair $(S,P)$.

Summary

We haven't generated a summary for this paper yet.