Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Game Theoretic Analysis for Energy Efficient Heterogeneous Networks (1310.3883v2)

Published 15 Oct 2013 in cs.GT, cs.IT, and math.IT

Abstract: Smooth and green future extension/scalability (e.g., from sparse to dense, from small-area dense to large-area dense, or from normal-dense to super-dense) is an important issue in heterogeneous networks. In this paper, we study energy efficiency of heterogeneous networks for both sparse and dense two-tier small cell deployments. We formulate the problem as a hierarchical (Stackelberg) game in which the macro cell is the leader whereas the small cell is the follower. Both players want to strategically decide on their power allocation policies in order to maximize the energy efficiency of their registered users. A backward induction method has been used to obtain a closed-form expression of the Stackelberg equilibrium. It is shown that the energy efficiency is maximized when only one sub-band is exploited for the players of the game depending on their fading channel gains. Simulation results are presented to show the effectiveness of the proposed scheme.

Citations (9)

Summary

We haven't generated a summary for this paper yet.