Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tangent cones to Schubert varieties in types $A_n$, $B_n$ and $C_n$ (1310.3166v2)

Published 11 Oct 2013 in math.AG

Abstract: Let $G$ be a complex reductive group, $T$ be a maximal torus of $G$, $B$ be a Borel subgroup of $G$ containing $T$, $W$ be the Weyl group of $G$ with respect to $T$. To each element $w$ of $W$ one can associate the Schubert subvariety $X_w$ of the flag variety $G/B$, the tangent cone to $X_w$ at the identity point $p$ considered as a subcheme of the tangent space $T_p(G/B)$, and the reduced tangent cone to $X_w$ at $p$ considered as a subvariety of $T_p(G/B)$. Let $w_1$, $w_2$ be distinct involutions in $W$. We prove that if $G$ is of type $B_n$ or $C_n$, then the tangent cones corresponding to $w_1$ and $w_2$ are distinct. We also prove that if $G$ is of type $A_n$ or $C_n$, then the reduced tangent cones corresponding to $w_1$ and $w_2$ are distinct.

Summary

We haven't generated a summary for this paper yet.