Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simple Dynamics for Plurality Consensus (1310.2858v3)

Published 10 Oct 2013 in cs.DM and cs.DC

Abstract: We study a \emph{Plurality-Consensus} process in which each of $n$ anonymous agents of a communication network initially supports an opinion (a color chosen from a finite set $[k]$). Then, in every (synchronous) round, each agent can revise his color according to the opinions currently held by a random sample of his neighbors. It is assumed that the initial color configuration exhibits a sufficiently large \emph{bias} $s$ towards a fixed plurality color, that is, the number of nodes supporting the plurality color exceeds the number of nodes supporting any other color by $s$ additional nodes. The goal is having the process to converge to the \emph{stable} configuration in which all nodes support the initial plurality. We consider a basic model in which the network is a clique and the update rule (called here the \emph{3-majority dynamics}) of the process is the following: each agent looks at the colors of three random neighbors and then applies the majority rule (breaking ties uniformly). We prove that the process converges in time $\mathcal{O}( \min{ k, (n/\log n){1/3} } \, \log n )$ with high probability, provided that $s \geqslant c \sqrt{ \min{ 2k, (n/\log n){1/3} }\, n \log n}$. We then prove that our upper bound above is tight as long as $k \leqslant (n/\log n){1/4}$. This fact implies an exponential time-gap between the plurality-consensus process and the \emph{median} process studied by Doerr et al. in [ACM SPAA'11]. A natural question is whether looking at more (than three) random neighbors can significantly speed up the process. We provide a negative answer to this question: In particular, we show that samples of polylogarithmic size can speed up the process by a polylogarithmic factor only.

Citations (57)

Summary

We haven't generated a summary for this paper yet.