Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Testing Graph Isotopy on Surfaces (1310.2745v1)

Published 10 Oct 2013 in cs.CG, cs.DS, and math.GT

Abstract: We investigate the following problem: Given two embeddings G_1 and G_2 of the same abstract graph G on an orientable surface S, decide whether G_1 and G_2 are isotopic; in other words, whether there exists a continuous family of embeddings between G_1 and G_2. We provide efficient algorithms to solve this problem in two models. In the first model, the input consists of the arrangement of G_1 (resp., G_2) with a fixed graph cellularly embedded on S; our algorithm is linear in the input complexity, and thus, optimal. In the second model, G_1 and G_2 are piecewise-linear embeddings in the plane minus a finite set of points; our algorithm runs in O(n{3/2}\log n) time, where n is the complexity of the input. The graph isotopy problem is a natural variation of the homotopy problem for closed curves on surfaces and on the punctured plane, for which algorithms have been given by various authors; we use some of these algorithms as a subroutine. As a by-product, we reprove the following mathematical characterization, first observed by Ladegaillerie (1984): Two graph embeddings are isotopic if and only if they are homotopic and congruent by an oriented homeomorphism.

Summary

We haven't generated a summary for this paper yet.