Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The asymptotic $k$-SAT threshold (1310.2728v6)

Published 10 Oct 2013 in math.CO, cs.DM, and math.PR

Abstract: Since the early 2000s physicists have developed an ingenious but non-rigorous formalism called the cavity method to put forward precise conjectures on phase transitions in random problems [Mezard, Parisi, Zecchina: Science 2002]. The cavity method predicts that the satisfiability threshold in the random $k$-SAT problem is $2k\ln2-\frac12(1+\ln 2)+\epsilon_k$, with $\lim_{k\rightarrow\infty}\epsilon_k=0$ [Mertens, Mezard, Zecchina: Random Structures and Algorithms 2006]. This paper contains a proof of that conjecture.

Citations (7)

Summary

We haven't generated a summary for this paper yet.