Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Bernstein-von Mises phenomenon for nonparametric Bayes procedures (1310.2484v4)

Published 9 Oct 2013 in math.ST and stat.TH

Abstract: We continue the investigation of Bernstein-von Mises theorems for nonparametric Bayes procedures from [Ann. Statist. 41 (2013) 1999-2028]. We introduce multiscale spaces on which nonparametric priors and posteriors are naturally defined, and prove Bernstein-von Mises theorems for a variety of priors in the setting of Gaussian nonparametric regression and in the i.i.d. sampling model. From these results we deduce several applications where posterior-based inference coincides with efficient frequentist procedures, including Donsker- and Kolmogorov-Smirnov theorems for the random posterior cumulative distribution functions. We also show that multiscale posterior credible bands for the regression or density function are optimal frequentist confidence bands.

Summary

We haven't generated a summary for this paper yet.