Papers
Topics
Authors
Recent
2000 character limit reached

Lower Bounds for Quantum Parameter Estimation

Published 8 Oct 2013 in quant-ph, cs.IT, math-ph, math.IT, and math.MP | (1310.2155v3)

Abstract: The laws of quantum mechanics place fundamental limits on the accuracy of measurements and therefore on the estimation of unknown parameters of a quantum system. In this work, we prove lower bounds on the size of confidence regions reported by any region estimator for a given ensemble of probe states and probability of success. Our bounds are derived from a previously unnoticed connection between the size of confidence regions and the error probabilities of a corresponding binary hypothesis test. In group-covariant scenarios, we find that there is an ultimate bound for any estimation scheme which depends only on the representation-theoretic data of the probe system, and we evaluate its asymptotics in the limit of many systems, establishing a general "Heisenberg limit" for region estimation. We apply our results to several examples, in particular to phase estimation, where our bounds allow us to recover the well-known Heisenberg and shot-noise scaling.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.