Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamics and termination cost of spatially coupled mean-field models (1310.2121v1)

Published 8 Oct 2013 in cond-mat.stat-mech, cs.IT, and math.IT

Abstract: This work is motivated by recent progress in information theory and signal processing where the so-called spatially coupled' design of systems leads to considerably better performance. We address relevant open questions about spatially coupled systems through the study of a simple Ising model. In particular, we consider a chain of Curie-Weiss models that are coupled by interactions up to a certain range. Indeed, it is well known that the pure (uncoupled) Curie-Weiss model undergoes a first order phase transition driven by the magnetic field, and furthermore, in the spinodal region such systems are unable to reach equilibrium in sub-exponential time if initialized in the metastable state. By contrast, the spatially coupled system is, instead, able to reach the equilibrium even when initialized to the metastable state. The equilibrium phase propagates along the chain in the form of a travelling wave. Here we study the speed of the wave-front and the so-calledtermination cost'--- \textit{i.e.}, the conditions necessary for the propagation to occur. We reach several interesting conclusions about optimization of the speed and the cost.

Citations (10)

Summary

We haven't generated a summary for this paper yet.