Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized Negative Binomial Processes and the Representation of Cluster Structures (1310.1800v1)

Published 7 Oct 2013 in stat.ME, math.ST, stat.ML, and stat.TH

Abstract: The paper introduces the concept of a cluster structure to define a joint distribution of the sample size and its exchangeable random partitions. The cluster structure allows the probability distribution of the random partitions of a subset of the sample to be dependent on the sample size, a feature not presented in a partition structure. A generalized negative binomial process count-mixture model is proposed to generate a cluster structure, where in the prior the number of clusters is finite and Poisson distributed and the cluster sizes follow a truncated negative binomial distribution. The number and sizes of clusters can be controlled to exhibit distinct asymptotic behaviors. Unique model properties are illustrated with example clustering results using a generalized Polya urn sampling scheme. The paper provides new methods to generate exchangeable random partitions and to control both the cluster-number and cluster-size distributions.

Summary

We haven't generated a summary for this paper yet.