Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Difference algebraic relations among solutions of linear differential equations (1310.1289v1)

Published 4 Oct 2013 in math.AC, math.AG, math.DS, and math.RA

Abstract: We extend and apply the Galois theory of linear differential equations equipped with the action of an endomorphism. The Galois groups in this Galois theory are difference algebraic groups and we use structure theorems for these groups to characterize the possible difference algebraic relations among solutions of linear differential equations. This yields tools to show that certain special functions are difference transcendent. One of our main results is a characterization of discrete integrability of linear differential equations with almost simple usual Galois group, based on a structure theorem for the Zariski dense difference algebraic subgroups of almost simple algebraic groups, which is a schematic version, in characteristic zero, of a result due to Z. Chatzidakis, E. Hrushovski and Y. Peterzil.

Summary

We haven't generated a summary for this paper yet.