Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Causal structures from entropic information: Geometry and novel scenarios (1310.0284v2)

Published 1 Oct 2013 in quant-ph

Abstract: The fields of quantum non-locality in physics, and causal discovery in machine learning, both face the problem of deciding whether observed data is compatible with a presumed causal relationship between the variables (for example a local hidden variable model). Traditionally, Bell inequalities have been used to describe the restrictions imposed by causal structures on marginal distributions. However, some structures give rise to non-convex constraints on the accessible data, and it has recently been noted that linear inequalities on the observable entropies capture these situations more naturally. In this paper, we show the versatility of the entropic approach by greatly expanding the set of scenarios for which entropic constraints are known. For the first time, we treat Bell scenarios involving multiple parties and multiple observables per party. Going beyond the usual Bell setup, we exhibit inequalities for scenarios with extra conditional independence assumptions, as well as a limited amount of shared randomness between the parties. Many of our results are based on a geometric observation: Bell polytopes for two-outcome measurements can be naturally imbedded into the convex cone of attainable marginal entropies. Thus, any entropic inequality can be translated into one valid for probabilities. In some situations the converse also holds, which provides us with a rich source of candidate entropic inequalities.

Summary

We haven't generated a summary for this paper yet.