Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Face Verification Using Boosted Cross-Image Features (1309.7434v1)

Published 28 Sep 2013 in cs.CV

Abstract: This paper proposes a new approach for face verification, where a pair of images needs to be classified as belonging to the same person or not. This problem is relatively new and not well-explored in the literature. Current methods mostly adopt techniques borrowed from face recognition, and process each of the images in the pair independently, which is counter intuitive. In contrast, we propose to extract cross-image features, i.e. features across the pair of images, which, as we demonstrate, is more discriminative to the similarity and the dissimilarity of faces. Our features are derived from the popular Haar-like features, however, extended to handle the face verification problem instead of face detection. We collect a large bank of cross-image features using filters of different sizes, locations, and orientations. Consequently, we use AdaBoost to select and weight the most discriminative features. We carried out extensive experiments on the proposed ideas using three standard face verification datasets, and obtained promising results outperforming state-of-the-art.

Summary

We haven't generated a summary for this paper yet.