Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimating Undirected Graphs Under Weak Assumptions (1309.6933v1)

Published 26 Sep 2013 in math.ST, cs.LG, stat.ML, and stat.TH

Abstract: We consider the problem of providing nonparametric confidence guarantees for undirected graphs under weak assumptions. In particular, we do not assume sparsity, incoherence or Normality. We allow the dimension $D$ to increase with the sample size $n$. First, we prove lower bounds that show that if we want accurate inferences with low assumptions then there are limitations on the dimension as a function of sample size. When the dimension increases slowly with sample size, we show that methods based on Normal approximations and on the bootstrap lead to valid inferences and we provide Berry-Esseen bounds on the accuracy of the Normal approximation. When the dimension is large relative to sample size, accurate inferences for graphs under low assumptions are not possible. Instead we propose to estimate something less demanding than the entire partial correlation graph. In particular, we consider: cluster graphs, restricted partial correlation graphs and correlation graphs.

Citations (12)

Summary

We haven't generated a summary for this paper yet.