Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High-dimensional Joint Sparsity Random Effects Model for Multi-task Learning (1309.6814v1)

Published 26 Sep 2013 in cs.LG and stat.ML

Abstract: Joint sparsity regularization in multi-task learning has attracted much attention in recent years. The traditional convex formulation employs the group Lasso relaxation to achieve joint sparsity across tasks. Although this approach leads to a simple convex formulation, it suffers from several issues due to the looseness of the relaxation. To remedy this problem, we view jointly sparse multi-task learning as a specialized random effects model, and derive a convex relaxation approach that involves two steps. The first step learns the covariance matrix of the coefficients using a convex formulation which we refer to as sparse covariance coding; the second step solves a ridge regression problem with a sparse quadratic regularizer based on the covariance matrix obtained in the first step. It is shown that this approach produces an asymptotically optimal quadratic regularizer in the multitask learning setting when the number of tasks approaches infinity. Experimental results demonstrate that the convex formulation obtained via the proposed model significantly outperforms group Lasso (and related multi-stage formulations

Citations (3)

Summary

We haven't generated a summary for this paper yet.