Boundedness of Intrinsic Littlewood-Paley Functions on Musielak-Orlicz Morrey and Campanato Spaces (1309.6512v1)
Abstract: Let $\varphi: {\mathbb Rn}\times [0,\infty)\to[0,\infty)$ be such that $\vz(x,\cdot)$ is nondecreasing, $\varphi(x,0)=0$, $\varphi(x,t)>0$ when $t>0$, $\lim_{t\to\infty}\varphi(x,t)=\infty$ and $\vz(\cdot,t)$ is a Muckenhoupt $A_\infty({\mathbb Rn})$ weight uniformly in $t$. Let $\phi: [0,\infty)\to[0,\infty)$ be nondecreasing. In this article, the authors introduce the Musielak-Orlicz Morrey space $\mathcal M{\varphi,\phi}(\mathbb Rn)$ and obtain the boundedness on $\mathcal M{\varphi,\phi}(\mathbb Rn)$ of the intrinsic Lusin area function $S_{\alpha}$, the intrinsic $g$-function $g_{\alpha}$, the intrinsic $g_{\lambda}*$-function $g\ast_{\lambda, \alpha}$ and their commutators with ${\rm BMO}(\rn)$ functions, where $\alpha\in(0,1]$, $\lambda\in(\min{\max{3,\,p_1},3+2\az/n},\infty)$ and $p_1$ denotes the uniformly upper type index of $\vz$. Let $\Phi: [0,\infty)\to[0,\infty)$ be nondecreasing, $\Phi(0)=0$, $\Phi(t)>0$ when $t>0$, and $\lim_{t\to\infty}\Phi(t)=\infty$, $w\in A_\infty(\mathbb Rn)$ and $\phi: (0,\infty)\to(0,\infty)$ be nonincreasing. The authors also introduce the weighted Orlicz-Morrey space $M_w{\Phi,\phi}(\mathbb Rn)$ and obtain the boundedness on $M_w{\Phi,\phi}(\mathbb Rn)$ of the aforementioned intrinsic Littlewood-Paley functions and their commutators with ${\rm BMO}(\rn)$ functions. Finally, for $q\in[1,\fz)$, the boundedness of the aforementioned intrinsic Littlewood-Paley functions on the Musielak Orlicz Campanato space $\mathcal L{\varphi,q}(\mathbb Rn)$ is also established.