Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicting Adoption Probabilities in Social Networks (1309.6369v1)

Published 24 Sep 2013 in cs.SI and physics.soc-ph

Abstract: In a social network, adoption probability refers to the probability that a social entity will adopt a product, service, or opinion in the foreseeable future. Such probabilities are central to fundamental issues in social network analysis, including the influence maximization problem. In practice, adoption probabilities have significant implications for applications ranging from social network-based target marketing to political campaigns; yet, predicting adoption probabilities has not received sufficient research attention. Building on relevant social network theories, we identify and operationalize key factors that affect adoption decisions: social influence, structural equivalence, entity similarity, and confounding factors. We then develop the locally-weighted expectation-maximization method for Na\"ive Bayesian learning to predict adoption probabilities on the basis of these factors. The principal challenge addressed in this study is how to predict adoption probabilities in the presence of confounding factors that are generally unobserved. Using data from two large-scale social networks, we demonstrate the effectiveness of the proposed method. The empirical results also suggest that cascade methods primarily using social influence to predict adoption probabilities offer limited predictive power, and that confounding factors are critical to adoption probability predictions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Xiao Fang (90 papers)
  2. Paul J. Hu (1 paper)
  3. Zhepeng Li (4 papers)
  4. Weiyu Tsai (1 paper)
Citations (148)

Summary

We haven't generated a summary for this paper yet.