Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Friendship Privacy Attack on Friends and 2-Distant Neighbors in Social Networks (1309.6204v2)

Published 24 Sep 2013 in cs.SI, cs.CR, and physics.soc-ph

Abstract: In an undirected social graph, a friendship link involves two users and the friendship is visible in both the users' friend lists. Such a dual visibility of the friendship may raise privacy threats. This is because both users can separately control the visibility of a friendship link to other users and their privacy policies for the link may not be consistent. Even if one of them conceals the link from a third user, the third user may find such a friendship link from another user's friend list. In addition, as most users allow their friends to see their friend lists in most social network systems, an adversary can exploit the inconsistent policies to launch privacy attacks to identify and infer many of a targeted user's friends. In this paper, we propose, analyze and evaluate such an attack which is called Friendship Identification and Inference (FII) attack. In a FII attack scenario, we assume that an adversary can only see his friend list and the friend lists of his friends who do not hide the friend lists from him. Then, a FII attack contains two attack steps: 1) friend identification and 2) friend inference. In the friend identification step, the adversary tries to identify a target's friends based on his friend list and those of his friends. In the friend inference step, the adversary attempts to infer the target's friends by using the proposed random walk with restart approach. We present experimental results using three real social network datasets and show that FII attacks are generally efficient and effective when adversaries and targets are friends or 2-distant neighbors. We also comprehensively analyze the attack results in order to find what values of parameters and network features could promote FII attacks. Currently, most popular social network systems with an undirected friendship graph, such as Facebook, LinkedIn and Foursquare, are susceptible to FII attacks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.