Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Smooth minimization of nonsmooth functions with parallel coordinate descent methods (1309.5885v1)

Published 23 Sep 2013 in cs.DC, math.OC, and stat.ML

Abstract: We study the performance of a family of randomized parallel coordinate descent methods for minimizing the sum of a nonsmooth and separable convex functions. The problem class includes as a special case L1-regularized L1 regression and the minimization of the exponential loss ("AdaBoost problem"). We assume the input data defining the loss function is contained in a sparse $m\times n$ matrix $A$ with at most $\omega$ nonzeros in each row. Our methods need $O(n \beta/\tau)$ iterations to find an approximate solution with high probability, where $\tau$ is the number of processors and $\beta = 1 + (\omega-1)(\tau-1)/(n-1)$ for the fastest variant. The notation hides dependence on quantities such as the required accuracy and confidence levels and the distance of the starting iterate from an optimal point. Since $\beta/\tau$ is a decreasing function of $\tau$, the method needs fewer iterations when more processors are used. Certain variants of our algorithms perform on average only $O(\nnz(A)/n)$ arithmetic operations during a single iteration per processor and, because $\beta$ decreases when $\omega$ does, fewer iterations are needed for sparser problems.

Citations (33)

Summary

We haven't generated a summary for this paper yet.