Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Degree-Corrected Stochastic Blockmodels for Community Detection (1309.4796v2)

Published 18 Sep 2013 in stat.ME, cs.SI, and physics.soc-ph

Abstract: Community detection in networks has drawn much attention in diverse fields, especially social sciences. Given its significance, there has been a large body of literature with approaches from many fields. Here we present a statistical framework that is representative, extensible, and that yields an estimator with good properties. Our proposed approach considers a stochastic blockmodel based on a logistic regression formulation with node correction terms. We follow a Bayesian approach that explicitly captures the community behavior via prior specification. We further adopt a data augmentation strategy with latent Polya-Gamma variables to obtain posterior samples. We conduct inference based on a principled, canonically mapped centroid estimator that formally addresses label non-identifiability and captures representative community assignments. We demonstrate the proposed model and estimation on real-world as well as simulated benchmark networks and show that the proposed model and estimator are more flexible, representative, and yield smaller error rates when compared to the MAP estimator from classical degree-corrected stochastic blockmodels.

Citations (25)

Summary

We haven't generated a summary for this paper yet.