Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A new design criterion for spherically-shaped division algebra-based space-time codes (1309.3901v2)

Published 16 Sep 2013 in cs.IT and math.IT

Abstract: This work considers normalized inverse determinant sums as a tool for analyzing the performance of division algebra based space-time codes for multiple antenna wireless systems. A general union bound based code design criterion is obtained as a main result. In our previous work, the behavior of inverse determinant sums was analyzed using point counting techniques for Lie groups; it was shown that the asymptotic growth exponents of these sums correctly describe the diversity-multiplexing gain trade-off of the space-time code for some multiplexing gain ranges. This paper focuses on the constant terms of the inverse determinant sums, which capture the coding gain behavior. Pursuing the Lie group approach, a tighter asymptotic bound is derived, allowing to compute the constant terms for several classes of space-time codes appearing in the literature. The resulting design criterion suggests that the performance of division algebra based codes depends on several fundamental algebraic invariants of the underlying algebra.

Citations (4)

Summary

We haven't generated a summary for this paper yet.