Approximation of Rectangular Beta-Laguerre Ensembles and Large Deviations (1309.3882v1)
Abstract: We investigate the random eigenvalues coming from the beta-Laguerre ensemble with parameter p, which is a generalization of the real, complex and quaternion Wishart matrices of parameter (n,p). In the case that the sample size n is much smaller than the dimension of the population distribution p, a common situation in modern data, we approximate the beta-Laguerre ensemble by a beta-Hermite ensemble which is a generalization of the real, complex and quaternion Wigner matrices. As corollaries, when n is much smaller than p, we show that the largest and smallest eigenvalues of the complex Wishart matrix are asymptotically independent; we obtain the limiting distribution of the condition numbers as a sum of two i.i.d. random variables with a Tracy-Widom distribution, which is much different from the exact square case that n=p by Edelman (1988); we propose a test procedure for a spherical hypothesis test. By the same approximation tool, we obtain the asymptotic distribution of the smallest eigenvalue of the beta-Laguerre ensemble. In the second part of the paper, under the assumption that n is much smaller than p in a certain scale, we prove the large deviation principles for three basic statistics: the largest eigenvalue, the smallest eigenvalue and the empirical distribution of eigenvalues, where the last large deviation is derived by using a non-standard method.