Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weak existence of a solution to a differential equation driven by a very rough fBm (1309.3613v2)

Published 14 Sep 2013 in math.PR

Abstract: We prove that if $f:\mathbb{R}\to\mathbb{R}$ is Lipschitz continuous, then for every $H\in(0,1/4]$ there exists a probability space on which we can construct a fractional Brownian motion $X$ with Hurst parameter $H$, together with a process $Y$ that: (i) is H\"older-continuous with H\"older exponent $\gamma$ for any $\gamma\in(0,H)$; and (ii) solves the differential equation $dY_t = f(Y_t) dX_t$. More significantly, we describe the law of the stochastic process $Y$ in terms of the solution to a non-linear stochastic partial differential equation.

Summary

We haven't generated a summary for this paper yet.