2000 character limit reached
Sharp Hardy-Littlewood-Sobolev inequality on the upper half space (1309.2341v1)
Published 9 Sep 2013 in math.AP
Abstract: There are at least two directions concerning the extension of classical sharp Hardy-Littlewood-Sobolev inequality: (1) Extending the sharp inequality on general manifolds; (2) Extending it for the negative exponent $\lambda=n-\alpha$ (that is for the case of $\alpha>n$). In this paper we confirm the possibility for the extension along the first direction by establishing the sharp Hardy-Littlewood-Sobolev inequality on the upper half space (which is conformally equivalent to a ball). The existences of extremal functions are obtained; And for certain range of the exponent, we classify all extremal functions via the method of moving sphere.