Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ultimate Positivity is Decidable for Simple Linear Recurrence Sequences (1309.1914v4)

Published 7 Sep 2013 in cs.CC, cs.DM, and cs.FL

Abstract: We consider the decidability and complexity of the Ultimate Positivity Problem, which asks whether all but finitely many terms of a given rational linear recurrence sequence (LRS) are positive. Using lower bounds in Diophantine approximation concerning sums of S-units, we show that for simple LRS (those whose characteristic polynomial has no repeated roots) the Ultimate Positivity Problem is decidable in polynomial space. If we restrict to simple LRS of a fixed order then we obtain a polynomial-time decision procedure. As a complexity lower bound we show that Ultimate Positivity for simple LRS is hard for co$\exists\mathbb{R}$, i.e., the class of problems solvable in the universal theory of the reals (which lies between coNP and PSPACE).

Citations (70)

Summary

We haven't generated a summary for this paper yet.