Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Aggregation Technique For Large-Scale PEPA Models With Non-Uniform Populations (1309.1613v1)

Published 6 Sep 2013 in cs.PF

Abstract: Performance analysis based on modelling consists of two major steps: model construction and model analysis. Formal modelling techniques significantly aid model construction but can exacerbate model analysis. In particular, here we consider the analysis of large-scale systems which consist of one or more entities replicated many times to form large populations. The replication of entities in such models can cause their state spaces to grow exponentially to the extent that their exact stochastic analysis becomes computationally expensive or even infeasible. In this paper, we propose a new approximate aggregation algorithm for a class of large-scale PEPA models. For a given model, the method quickly checks if it satisfies a syntactic condition, indicating that the model may be solved approximately with high accuracy. If so, an aggregated CTMC is generated directly from the model description. This CTMC can be used for efficient derivation of an approximate marginal probability distribution over some of the model's populations. In the context of a large-scale client-server system, we demonstrate the usefulness of our method.

Citations (4)

Summary

We haven't generated a summary for this paper yet.