Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

From Instantly Decodable to Random Linear Network Coding (1309.1323v1)

Published 5 Sep 2013 in cs.IT and math.IT

Abstract: Our primary goal in this paper is to traverse the performance gap between two linear network coding schemes: random linear network coding (RLNC) and instantly decodable network coding (IDNC) in terms of throughput and decoding delay. We first redefine the concept of packet generation and use it to partition a block of partially-received data packets in a novel way, based on the coding sets in an IDNC solution. By varying the generation size, we obtain a general coding framework which consists of a series of coding schemes, with RLNC and IDNC identified as two extreme cases. We then prove that the throughput and decoding delay performance of all coding schemes in this coding framework are bounded between the performance of RLNC and IDNC and hence throughput-delay tradeoff becomes possible. We also propose implementations of this coding framework to further improve its throughput and decoding delay performance, to manage feedback frequency and coding complexity, or to achieve in-block performance adaption. Extensive simulations are then provided to verify the performance of the proposed coding schemes and their implementations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Mingchao Yu (16 papers)
  2. Neda Aboutorab (23 papers)
  3. Parastoo Sadeghi (104 papers)
Citations (30)

Summary

We haven't generated a summary for this paper yet.