Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boundedness of Pseudodifferential Operators on Banach Function Spaces (1309.0328v1)

Published 2 Sep 2013 in math.FA and math.AP

Abstract: We show that if the Hardy-Littlewood maximal operator is bounded on a separable Banach function space $X(\mathbb{R}n)$ and on its associate space $X'(\mathbb{R}n)$, then a pseudodifferential operator $\operatorname{Op}(a)$ is bounded on $X(\mathbb{R}n)$ whenever the symbol $a$ belongs to the H\"ormander class $S_{\rho,\delta}{n(\rho-1)}$ with $0<\rho\le 1$, $0\le\delta<1$ or to the the Miyachi class $S_{\rho,\delta}{n(\rho-1)}(\varkappa,n)$ with $0\le\delta\le\rho\le 1$, $0\le\delta<1$, and $\varkappa>0$. This result is applied to the case of variable Lebesgue spaces $L{p(\cdot)}(\mathbb{R}n)$.

Summary

We haven't generated a summary for this paper yet.