Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantifying 'causality' in complex systems: Understanding Transfer Entropy (1309.0305v2)

Published 2 Sep 2013 in cond-mat.stat-mech, cs.IT, and math.IT

Abstract: 'Causal' direction is of great importance when dealing with complex systems. Often big volumes of data in the form of time series are available and it is important to develop methods that can inform about possible causal connections between the different observables. Here we investigate the ability of the Transfer Entropy measure to identify causal relations embedded in emergent coherent correlations. We do this by firstly applying Transfer Entropy to an amended Ising model. In addition we use a simple Random Transition model to test the reliability of Transfer Entropy as a measure of `causal' direction in the presence of stochastic fluctuations. In particular we systematically study the effect of the finite size of data sets.

Citations (43)

Summary

We haven't generated a summary for this paper yet.