Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On transitivity and (non)amenability of Aut(F_n) actions on group presentations (1309.0271v3)

Published 1 Sep 2013 in math.GR

Abstract: For a finitely generated group $G$ the Nielsen graph $N_n(G)$, $n\geq \operatorname{rank}(G)$, describes the action of the group $\operatorname{Aut}F_n$ of automorphisms of the free group $F_n$ on generating $n$-tuples of G by elementary Nielsen moves. The question of (non)amenability of Nielsen graphs is of particular interest in relation with the open question about Property $(T)$ for $\operatorname{Aut}F_n$, $n\geq 4$. We prove nonamenability of Nielsen graphs $N_n(G)$ for all $n\ge \max{2,\operatorname{rank}(G)}$ when $G$ is indicable, and for $n$ big enough when $G$ is elementary amenable. We give an explicit description of $N_d(G)$ for relatively free (in some variety) groups of rank $d$ and discuss their connectedness and nonamenability. Examples considered include free polynilpotent groups and free Burnside groups.

Summary

We haven't generated a summary for this paper yet.