Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Ranking: Discrete Choice, Spearman Correlation and Other Feedback (1308.6797v5)

Published 30 Aug 2013 in cs.LG, cs.GT, and stat.ML

Abstract: Given a set $V$ of $n$ objects, an online ranking system outputs at each time step a full ranking of the set, observes a feedback of some form and suffers a loss. We study the setting in which the (adversarial) feedback is an element in $V$, and the loss is the position (0th, 1st, 2nd...) of the item in the outputted ranking. More generally, we study a setting in which the feedback is a subset $U$ of at most $k$ elements in $V$, and the loss is the sum of the positions of those elements. We present an algorithm of expected regret $O(n{3/2}\sqrt{Tk})$ over a time horizon of $T$ steps with respect to the best single ranking in hindsight. This improves previous algorithms and analyses either by a factor of either $\Omega(\sqrt{k})$, a factor of $\Omega(\sqrt{\log n})$ or by improving running time from quadratic to $O(n\log n)$ per round. We also prove a matching lower bound. Our techniques also imply an improved regret bound for online rank aggregation over the Spearman correlation measure, and to other more complex ranking loss functions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.