Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beyond Ohba's Conjecture: A bound on the choice number of $k$-chromatic graphs with $n$ vertices (1308.6739v3)

Published 30 Aug 2013 in math.CO and cs.DM

Abstract: Let $\text{ch}(G)$ denote the choice number of a graph $G$ (also called "list chromatic number" or "choosability" of $G$). Noel, Reed, and Wu proved the conjecture of Ohba that $\text{ch}(G)=\chi(G)$ when $|V(G)|\le 2\chi(G)+1$. We extend this to a general upper bound: $\text{ch}(G)\le \max{\chi(G),\lceil({|V(G)|+\chi(G)-1})/{3}\rceil}$. Our result is sharp for $|V(G)|\le 3\chi(G)$ using Ohba's examples, and it improves the best-known upper bound for $\text{ch}(K_{4,\dots,4})$.

Citations (10)

Summary

We haven't generated a summary for this paper yet.