Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semilinear fractional elliptic equations with gradient nonlinearity involving measures (1308.6720v5)

Published 30 Aug 2013 in math.AP

Abstract: We study the existence of solutions to the fractional elliptic equation (E1) $(-\Delta)\alpha u+\epsilon g(|\nabla u|)=\nu $ in a bounded regular domain $\Omega$ of $\RN (N\ge2)$, subject to the condition (E2) $u=0$ in $\Omegac$, where $\epsilon=1$ or $-1$, $(-\Delta)\alpha$ denotes the fractional Laplacian with $\alpha\in(1/2,1)$, $\nu$ is a Radon measure and $g:\R_+\mapsto\R_+$ is a continuous function. We prove the existence of weak solutions for problem (E1)-(E2) when $g$ is subcritical. Furthermore, the asymptotic behavior and uniqueness of solutions are described when $\nu$ is Dirac mass, $g(s)=sp$, $p\geq 1$ and $\epsilon=1$.

Summary

We haven't generated a summary for this paper yet.