Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bockstein cohomology of associated graded rings (1308.6428v1)

Published 29 Aug 2013 in math.AC

Abstract: Let $(A,\mathfrak{m})$ be a Cohen-Macaulay local ring of dimension $d$ and let $I$ be an $\mathfrak{m}$-primary ideal. Let $G$ be the associated graded ring of $A$ \wrt \ $I$ and let $\R = A[It,t{-1}]$ be the extended Rees ring of $A$ with respect to $I$. Notice $t{-1}$ is a non-zero divisor on $\R$ and $\R/t{-1}\R = G$. So we have \textit{Bockstein operators} $\betai \colon Hi_{G_+}(G)(-1) \rt H{i+1}{G+}(G)$ for $i \geq 0$. Since $\beta{i+1}(+1)\circ \betai = 0$ we have \textit{Bockstein cohomology} modules $BHi(G)$ for $i = 0,\ldots,d$. In this paper we show that certain natural conditions on $I$ implies vanishing of some Bockstein cohomology modules.

Summary

We haven't generated a summary for this paper yet.