Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A proposition of a robust system for historical document images indexation (1308.6319v1)

Published 28 Aug 2013 in cs.CV

Abstract: Characterizing noisy or ancient documents is a challenging problem up to now. Many techniques have been done in order to effectuate feature extraction and image indexation for such documents. Global approaches are in general less robust and exact than local approaches. That's why, we propose in this paper, a hybrid system based on global approach(fractal dimension), and a local one based on SIFT descriptor. The Scale Invariant Feature Transform seems to do well with our application since it's rotation invariant and relatively robust to changing illumination.In the first step the calculation of fractal dimension is applied to images in order to eliminate images which have distant features than image request characteristics. Next, the SIFT is applied to show which images match well the request. However the average matching time using the hybrid approach is better than "fractal dimension" and "SIFT descriptor" if they are used alone.

Citations (8)

Summary

We haven't generated a summary for this paper yet.