Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enabling Privacy-preserving Auctions in Big Data (1308.6202v2)

Published 28 Aug 2013 in cs.CR

Abstract: We study how to enable auctions in the big data context to solve many upcoming data-based decision problems in the near future. We consider the characteristics of the big data including, but not limited to, velocity, volume, variety, and veracity, and we believe any auction mechanism design in the future should take the following factors into consideration: 1) generality (variety); 2) efficiency and scalability (velocity and volume); 3) truthfulness and verifiability (veracity). In this paper, we propose a privacy-preserving construction for auction mechanism design in the big data, which prevents adversaries from learning unnecessary information except those implied in the valid output of the auction. More specifically, we considered one of the most general form of the auction (to deal with the variety), and greatly improved the the efficiency and scalability by approximating the NP-hard problems and avoiding the design based on garbled circuits (to deal with velocity and volume), and finally prevented stakeholders from lying to each other for their own benefit (to deal with the veracity). We achieve these by introducing a novel privacy-preserving winner determination algorithm and a novel payment mechanism. Additionally, we further employ a blind signature scheme as a building block to let bidders verify the authenticity of their payment reported by the auctioneer. The comparison with peer work shows that we improve the asymptotic performance of peer works' overhead from the exponential growth to a linear growth and from linear growth to a logarithmic growth, which greatly improves the scalability.

Citations (12)

Summary

We haven't generated a summary for this paper yet.