Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Selective Decoding in Associative Memories Based on Sparse-Clustered Networks (1308.6021v1)

Published 28 Aug 2013 in cs.AR

Abstract: Associative memories are structures that can retrieve previously stored information given a partial input pattern instead of an explicit address as in indexed memories. A few hardware approaches have recently been introduced for a new family of associative memories based on Sparse-Clustered Networks (SCN) that show attractive features. These architectures are suitable for implementations with low retrieval latency, but are limited to small networks that store a few hundred data entries. In this paper, a new hardware architecture of SCNs is proposed that features a new data-storage technique as well as a method we refer to as Selective Decoding (SD-SCN). The SD-SCN has been implemented using a similar FPGA used in the previous efforts and achieves two orders of magnitude higher capacity, with no error-performance penalty but with the cost of few extra clock cycles per data access.

Citations (6)

Summary

We haven't generated a summary for this paper yet.