Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boundedness of Maximal Calderón-Zygmund Operators on Non-homogeneous Metric Measure Spaces (1308.5796v1)

Published 27 Aug 2013 in math.CA and math.FA

Abstract: Let $(\cx,\,d,\,\mu)$ be a metric measure space and satisfy the so-called upper doubling condition and the geometrically doubling condition. In this paper, the authors show that for the maximal Calder\'on-Zygmund operator associated with a singular integral whose kernel satisfies the standard size condition and the H\"ormander condition, its $Lp(\mu)$ boundedness with $p\in(1,\infty)$ is equivalent to its boundedness from $L1(\mu)$ into $L{1,\infty}(\mu)$. Moreover, applying this, together with a new Cotlar type inequality, the authors show that if the Calder\'on-Zygmund operator $T$ is bounded on $L2(\mu)$, then the corresponding maximal Calder\'on-Zygmund is bounded on $Lp(\mu)$ for all $p\in(1,\infty)$, and bounded from $L1(\mu)$ into $L{1,\infty}(\mu)$. These results essentially improve the existing results.

Summary

We haven't generated a summary for this paper yet.