Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Randomized algorithms for low-rank matrix factorizations: sharp performance bounds (1308.5697v1)

Published 26 Aug 2013 in cs.NA and stat.CO

Abstract: The development of randomized algorithms for numerical linear algebra, e.g. for computing approximate QR and SVD factorizations, has recently become an intense area of research. This paper studies one of the most frequently discussed algorithms in the literature for dimensionality reduction---specifically for approximating an input matrix with a low-rank element. We introduce a novel and rather intuitive analysis of the algorithm in Martinsson et al. (2008), which allows us to derive sharp estimates and give new insights about its performance. This analysis yields theoretical guarantees about the approximation error and at the same time, ultimate limits of performance (lower bounds) showing that our upper bounds are tight. Numerical experiments complement our study and show the tightness of our predictions compared with empirical observations.

Citations (73)

Summary

We haven't generated a summary for this paper yet.