Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Few distinct distances implies no heavy lines or circles (1308.5620v1)

Published 26 Aug 2013 in math.CO and cs.CG

Abstract: We study the structure of planar point sets that determine a small number of distinct distances. Specifically, we show that if a set P of n points determines o(n) distinct distances, then no line contains \Omega(n{7/8}) points of P and no circle contains \Omega(n{5/6}) points of P. We rely on the bipartite and partial variant of the Elekes-Sharir framework that was presented by Sharir, Sheffer, and Solymosi in \cite{SSS13}. For the case of lines we combine this framework with a theorem from additive combinatorics, and for the case of circles we combine it with some basic algebraic geometry and a recent incidence bound for plane algebraic curves by Wang, Yang, and Zhang \cite{WYZ13}. A significant difference between our approach and that of \cite{SSS13} (and other recent extensions) is that, instead of dealing with distances between two point sets that are restricted to one-dimensional curves, we consider distances between one set that is restricted to a curve and one set with no restrictions on it.

Citations (14)

Summary

We haven't generated a summary for this paper yet.