Sur les champs de vecteurs invariants sur l'espace tangent d'un espace symétrique (1308.5108v1)
Abstract: Let $G$ be a real reductive connected Lie group and $\sigma$ an involution of $G$. Let $H$ denote the identity component of the group of fixed points of $\sigma$, $\mathfrak g$ the Lie algebra of $G$ and $\mathfrak q$ the -1 eigenspace of $\sigma$ in $\mathfrak g$. The group $H$ acts naturally on $\mathfrak q$ via the adjoint representation. Let $C{\infty}(\mathfrak q)H$ denote the algebra of $H$-invariant smooth functions on $\mathfrak q$, and $\mathfrak X(\mathfrak q)H$ the space of $H$-invariant smooth vetor fields on $\mathfrak q$. Any vetor field $X\in \mathfrak X(\mathfrak q)H$ defines naturally a derivation $D_X$ of the algebra $C{\infty}(\mathfrak q)H$. We prove that the image of the map $X\mapsto D_X$ is the set of derivations of the algebra $C{\infty}(\mathfrak q)H$ preserving the ideal $\it{\Phi}C{\infty}(\mathfrak q)H$ of $C{\infty}(\mathfrak q)H$, where $\it{\Phi}$ is a discriminant function on $\mathfrak q$.