Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computer emulation with non-stationary Gaussian processes (1308.4756v2)

Published 22 Aug 2013 in stat.ME

Abstract: Gaussian process (GP) models are widely used to emulate propagation uncertainty in computer experiments. GP emulation sits comfortably within an analytically tractable Bayesian framework. Apart from propagating uncertainty of the input variables, a GP emulator trained on finitely many runs of the experiment also offers error bars for response surface estimates at unseen input values. This helps select future input values where the experiment should be run to minimize the uncertainty in the response surface estimation. However, traditional GP emulators use stationary covariance functions, which perform poorly and lead to sub-optimal selection of future input points when the response surface has sharp local features, such as a jump discontinuity or an isolated tall peak. We propose an easily implemented non-stationary GP emulator, based on two stationary GPs, one nested into the other, and demonstrate its superior ability in handling local features and selecting future input points from the boundaries of such features.

Summary

We haven't generated a summary for this paper yet.